

Max Marks: 200 Date: 08.08.2022

JB 2 KVL BATCH **CHEMISTRY: PART TEST**

			1(opic: States of Ma	mer +	S- Block		
1.	16 g o	f oxygen and 3 g of	f hydrog	en are mixed and kep	t at 760	mm pressure and 0°	C. The to	otal volume occupied
	by the	mixture will be nea	rly					
	(a)	22.4 litres	(b)	33.6 litres	(c)	448 literes	(d)	44800 ml
2			s stored i	in a tank of 100 litre	capacity	at 20° C and 2 atm p	pressure.	The mass of the gas
	will be							
	(a)	34 g	(b)	340 g	(c)	282.4 g	(d)	28.24 g
3.	At N.7	Γ .P. the volume of a	gas is f	ound to be 273 ml. W	/hat will	be the volume of this	s gas at	600 mm Hg and 273°
	(a)	391.8 mL	(b)	380 ml	(c)	691.6 ml	(d)	750 ml
4.	One li	tre of a gas weight	ts 2 g at	t 300 k and 1atm pro	essure. I	f the pressure is made	de 0.75	atm, at which of the
	follow	ring temperatures wi	ill one lit	tre of the same gas w	eigh one	gram.		
	(a)	450 K	(b)	600 K	(c)	800 K	(d)	900 K
5.	A whe	eather balloon filled	l with hy	ydrogen at 1 atm and	27° C 1	nas volume equal to	12000 li	tres. On ascending it
	reache	s a place where the	tempera	ture is – 23° C and pr	essure is	0.5 atm. The volume	of the b	alloon is
	(a)	24000 litres	(b)	20000 litres	(c)	10000 litres	(d)	12000 litres
6.	The de	ensity of a gas at 27	o C and	1 atm is d. Pressure	remainin	g constant at which o	of the fo	llowing temperatures
	will its	s density become 0.7	75 d					
	(a)	20° C	(b)	30 ° C	(c)	400 K	(d)	300 K

7.	_	_		t 27 ° C and 740 mm	pressure	e. When its volume is	changed	l to 80 ml at 740 mm
	pressur	e, the temperature of	of the gas	s will be				
	(a)	21.6° C	(b)	240° C	(c)	-33° C	(d)	89.5° C
8.	The tot	tal pressure exerted	by a nu	umber of non-reacting	g gases i	is equal to the sum o	of the par	rtial pressures of the
	gases u	inder the same cond	itions is	known as				
	(a)	Boyle's law	(b)	Charle's law	(c)	Avogadro's law	(d)	Dalton's law
9.	"Equal	volumes of all ga	ises at t	he same temperature	and pr	essure contain equal	numbe	r of particles." This
	stateme	ent is a direct consec	quence o	of				
	(a)	Avogadro's law			(b)	Charle's law		
	(c)	Ideal gas equation			(d)	Law of partial press	ure	
10.	If three	unreactive gases h	aving pa	artial pressures PA, PB	and Po	and their moles ar	e 1,2 and	d 3 respectively then
	their to	tal pressure will be						
	(a)	$P = P_A + P_B + P_C$	(b)	$P = \frac{P_{A+}P_{B+}P_C}{6}$	(c)	$P = \frac{\sqrt{P_A + P_B + P_C}}{3}$	(d)	None
11.	Dalton'	's law of partial pres	ssure wil	l not apply to which o	of the fol	llowing mixture of ga	ises	
	(a)	H ₂ and SO ₂	(b)	H ₂ and Cl ₂	(c)	H_2 and CO_2	(d)	CO ₂ and Cl ₂
12.	Which	of the following mi	xtures of	f gases does not obey	Dalton's	s law of partial pressu	ıre	
	(a)	O ₂ and CO ₂	(b)	N_2 and O_2	(c)	Cl ₂ and O ₂	(d)	NH ₃ and HCl
13.	To whi	ch of the following	gaseous	mixtures is Dalton's	law not	applicable		
	(a)	$Ne + He + SO_2$	(b)	$NH_3 + HCl + HBr$	(c)	$O_2 + N_2 + CO_2$	(d)	$N_2 + H_2 + O_2$

14.	The chemical nature of hydrogen peroxide is:										
	(a)	Oxidising and red	ucing ag	gent in acidic mo	edium, but not	t in basic medium.					
	(b)	Oxidising and red	ucing ag	gent in both acid	lic and basic n	nedium					
	(c)	Reducing agent in basic medium, but not in acidic medium									
	(d)	Oxidising agent in acidic medium, but not in basic medium									
15.	The str	ength of 11.2 volui	ne soluti	on of H ₂ O ₂ is:	[Given that n	nolar mass of H = 1	g mol ⁻¹ a	and $O = 16 \text{ g mol}^{-1}$			
	(a)	13.6%	(b)	3.4%	(c)	34%	(d)	1.7%			
16.	The correct statements among (a) to (d) are:										
	(i)	i) saline hydrides produce H_2 gas when reacted with H_2O .									
	(ii)	reaction of LiAlH ₄ with BF ₃ leads to B ₂ H ₆ .									
	(iii)	PH ₃ and CH ₄ are electron – rich and electron – precise hydrides, respectively.									
	(iv)	HF and CH ₄ are called as molecular hydrides.									
	(a)	(iii) and (iv) only			(b)	(i), (ii) and (iii) on	ıly				
	(c)	(i), (ii), (iii) and (i	iv)		(d)	(i), (iii) and (iv) only					
17.	Hydrog	gen peroxide in its 1	ducing agent in acidic medium, but not in basic medium. ducing agent in both acidic and basic medium in basic medium, but not in acidic medium in acidic medium, but not in basic medium in acidic medium, but not in acidic medium in acidic medium, but not in acidic medium in acidic medium, but not in basic medium in acidic medium. ducile medium, but not in basic medium in acidic medium in a								
	(a)	reducing agent, or	xidizing	agent	(b)	reducing agent, re	ducing a	gent			
	(c)	oxidizing agent, o	xidizing	agent	(d)	oxidizing agent, re	educing a	agent			
18.	Alkali	metal hydrides read	ct with w	ater to give							
	(a)	Acidic solution	(b)	Basic solution	n (c)	Neutral solution	(d)	Hydride ion			
19.	When 6	electric current is p	assed thi	ough an ionic h	nydride in the	molten state					
	(a)	Hydrogen is libera	ated at th	ne anode	(b)	Hydrogen is liberated at the cathode					
	(c)	No reaction takes	place		(d)	Hydride ion migrates towards cathode					

20.	O. In which of the following reaction hydrogen peroxide is a reducing agent?									
	(a)	$2FeCl_2 + 2HCl$	+ H ₂ O ₂ -	\rightarrow 2FeCl ₃ + 2H ₂ O						
	(b)	$Cl_2 + H_2O_2 \rightarrow C$	2HCl + O	2						
	(c)	$2HI + H_2O_2 \rightarrow$	$2H_2O + I_2O$	2						
	(d)	$H_2SO_3 + H_2O_2 -$	\rightarrow H ₂ SO ₄	+ H ₂ O						
21.	The re	eaction of $H_2S + H_2$	$I_2O_2 \rightarrow S$	+ 2H ₂ O manifests						
	(a)	Acidic nature of	$f H_2O_2$		(b)	Alkaline nature of	$f H_2O_2$			
	(c)	Oxidising natur	e of H ₂ O ₂	2	(d)	Reducing action of	of H ₂ O ₂			
22.	Hydro	ogen peroxide is re	educed by	,						
	(a)	Lead sulphide s	uspensio	1	(b)	Barium peroxide				
	(c)	Acidic solution	of KMn(\mathbf{O}_4	(d)	Ozone				
23.	Metals like platinum and palladium can absorb large volumes of hydrogen under special conditions. Such									
	absor	bed hydrogen by t	he metal i	is known as						
	(a)	Adsorbed hydro	ogen		(b)	Occuluded hydrogen				
	(c)	Reactive hydrog	gen		(d)	Atomic hydrogen				
24.	Ortho	and para hydroge	n differ iı	1						
	(a)	Proton spin	(b)	Electron spin	(c)	Nuclear charge	(d)	Nuclear reaction		
25.	Hydro	ogen from HCl car	n be prepa	ared by						
	(a)	Mg	(b)	Cu	(c)	P	(d)	Pt.		

MATHEMATICS: PART TEST

Topic: Trigonometry

				Space for Por	ugh Wo	nlz					
	(a)	8 cos x	(b)	cos x	(c)	8 sin x	(d)	sin x			
32.	$8.\sin\frac{x}{8}$	$\frac{x}{3}.\cos\frac{x}{2}.\cos\frac{x}{4}.\cos$	$\frac{x}{8} =$								
	(a)	2	(b)	$\frac{\pi}{2}$	(c)	π	(d)	4			
	of the c	ircle, is									
31.	The rac	lian measure of the	angle, s	ubtended at the centr	e of a ci	rcle by an arc whose	length i	s twice the diameter			
	(a)	$6\frac{1}{2}$	(b)	$7\frac{1}{2}$	(c)	$8\frac{1}{2}$	(d)	$9\frac{1}{2}$			
30.	sin ² 5°	$+\sin^2 10^\circ + \sin^2 15$	° + +	$\sin^2 90^\circ = \dots$							
	(a)	$-\sqrt{2}$	(b)	1	(c)	$1/\sqrt{2}$	(d)	-1			
29.	tan 20°	$+\tan 25^{\circ} + \tan 20^{\circ}$	o . tan 25	° =							
	(a)	220/221	(b)	-171/221	(c)	-140/171	(d)	None of these			
28.	3. If $\sin \alpha = 15/17$, $(\pi/2) < \alpha < \pi$ and $\sec \beta = 13/12$, $(3\pi/2) < \beta < 2\pi$, then : $\cos(\beta - \alpha) =$										
	(a)	$\frac{14}{25}$	(b)	$\frac{20}{21}$	(c)	$\frac{21}{20}$	(d)	$\frac{15}{16}$			
27.	If cosed	$e \theta + \cos \theta = \frac{5}{2}, t$	hen the v	value of tan θ is							
	(a)	15	(b)	20	(c)	25	(d)	30			
		the maximum area (in sq. m) of the flowerbed is									
(a) 15 (b) 20 (c) 25 (d) 30 27. If $\csc \theta + \cos \theta = \frac{5}{2}$, then the value of $\tan \theta$ is (a) $\frac{14}{25}$ (b) $\frac{20}{21}$ (c) $\frac{21}{20}$ (d) $\frac{15}{16}$ 28. If $\sin \alpha = \frac{15}{17}$, $(\pi/2) < \alpha < \pi$ and $\sec \beta = \frac{13}{12}$, $(3\pi/2) < \beta < 2\pi$, then: $\cos(\beta - \alpha) = (\alpha) 220/221$ (b) $-\frac{171}{221}$ (c) $-\frac{140}{171}$ (d) None of these 29. $\tan 20^{\circ} + \tan 25^{\circ} + \tan 20^{\circ}$. $\tan 25^{\circ} = \dots$ (a) $-\sqrt{2}$ (b) 1 (c) $1/\sqrt{2}$ (d) -1 30. $\sin^2 5^{\circ} + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \sin^2 90^{\circ} = \dots$ (a) $6\frac{1}{2}$ (b) $7\frac{1}{2}$ (c) $8\frac{1}{2}$ (d) $9\frac{1}{2}$ 31. The radian measure of the angle, subtended at the centre of a circle by an arc whose length is twice the dian of the circle, is	radius 5 metres, thei										

33.	TC 41 1	. C . 4 1		1 1 2 2 41	41 11 4	1
11	IT the angles	' OT a triangie	are in the rati	OI'/'A INPH	the smallest	angle in radian is
JJ.	II the angles	or a manen	are in the rati	0 + 2 + 3 + 4 + 6 + 4 + 6 + 6 + 6 + 6 + 6 + 6 + 6	i the smanest	angic in fadian is

()	π
(a)	3

(b)
$$\frac{\pi}{6}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{9}$$

34.
$$1 - \frac{\sin^2 \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} - \frac{\sin \theta}{1 - \cos \theta}$$
 equals

(c)
$$\sin \theta$$

(d)
$$\cos \theta$$

35. If
$$\tan \alpha = 3/4$$
, α in third quadrant, and $\cos \beta = 9/41$, β in first quadrant, then : $\cos (\alpha + \beta) =$

(a)
$$-187/84$$

36.
$$\tan 40^{\circ} + 2 \tan 10^{\circ} =$$

(a)
$$\tan 20^{\circ}$$

(b)
$$\tan 80^{\circ}$$

(c)
$$\tan 50^{\circ}$$

(d)
$$\tan 30^{\circ}$$

37.
$$\tan 20^{\circ} + \tan 40^{\circ} + \sqrt{3} \cdot \tan 20^{\circ} \cdot \tan 40^{\circ} =$$

(b)
$$\sqrt{2}$$

(c)
$$\sqrt{3}$$

(b)
$$\frac{\pi}{2}$$

39. If
$$\tan \theta + \sec \theta = \sqrt{3}$$
, then : $\theta =$

(a)
$$\frac{5\pi}{6}$$

(b)
$$\frac{2\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{3}$$

40. A semicircle is divided into two sectors whose angles are in the ratio 4:5. Find the ratio of their areas?

- (a) 5:1
- (b) 4:5
- (c) 5:4
- (d) 3:4

41. If cosec
$$\theta$$
 – cot θ = q, then the value of cot θ is

(a)
$$\frac{2q}{1+q^2}$$

$$(b) \qquad \frac{2q}{1-q^2}$$

$$(c) \qquad \frac{1-q^2}{2q}$$

$$(d) \qquad \frac{1+q^2}{2q}$$

12.	In sin $\theta = 1/2$, cos $\phi = 12/13$, where θ lies the second quadrant and	ϕ in the fourth, then : tan $(\theta - \phi)$ =
-----	--	---	--

(d)

None of these

(a)	$\frac{12 + 5\sqrt{3}}{26}$	(b)	$-\frac{(12\sqrt{3}+5)}{26}$	(c)	$\frac{5\sqrt{3}-12}{12\sqrt{3}+5}$	
	20		20		$12\sqrt{3} + 3$	

43.
$$\tan (45^{\circ} + A) \cdot \tan (45^{\circ} - A) =$$

(a)
$$-1$$
 (b) 0 (c) 1 (d) $\tan 2A$

44.
$$\tan 56^{\circ} - \tan 11^{\circ} - \tan 56^{\circ}$$
. $\tan 11^{\circ} = \dots$

(a)
$$-1$$
 (b) 0 (c) 1 (d) $\sqrt{3}$

45. A wire in the form of a rectangle of sides 4 cm and 6 cm is reshaped into a sector of a circle of radius 8 cm. Then the angle of the sector in degrees is

(a)
$$\frac{\pi^{0}}{45}$$
 (b) $\frac{180^{0}}{\pi}$ (c) $\frac{360^{0}}{\pi}$ (d) $\frac{90^{0}}{\pi}$

46. If
$$A + B = 45^{\circ}$$
, then : $(1 + \tan A) (1 + \tan B) = ...$

47. Find the measure of the angle between hour-hand and the minute hand of a clock at twenty minute past two.

(a)
$$50^{\circ}$$
 (b) 60° (c) 54° (d) 65°

48. The cotangent of the angles $\frac{\pi}{3}$, $\frac{\pi}{4}$ and $\frac{\pi}{6}$ are in

49. For any angles A and B, $\sin (A + B) \cdot \sin (A - B) =$

(a)
$$\sin (A^2 - B^2)$$
 (b) $\sin^2 A - \sin^2 B$ (c) $\cos^2 A - \cos^2 B$ (d) None of these

50. $\tan 75^{\circ} + \tan 15^{\circ} = \dots$

(a)
$$1 + \sqrt{3}$$
 (b) $\sqrt{3} - 1$ (c) $\sqrt{3}$ (d) 4

Max Marks: 200 Date: 08.08.2022

JB 2 KVL BATCH CHEMISTRY: PART TEST ANSWER KEY

Topic: States of Matter + S-Block

1.	(d)	2.	(c)	3.	(c)	4.	(a)	5.	(b)
6.	(c)	7.	(c)	8.	(d)	9.	(a)	10.	(c)
11.	(a)	12.	(b)	13.	(b)	14.	(b)	15.	(b)
16.	(c)	17.	(a)	18.	(b)	19.	(a)	20.	(b)
21.	(c)	22.	(a)	23.	(a)	24.	(a)	25.	(a)

MATHEMATICS : PART TEST ANSWER KEY Topic: Trigonometry

26.	(c)	27.	(b)	28.	(b)	29.	(b)	30.	(d)
31.	(d)	32.	(d)	33.	(b)	34.	(d)	35.	(b)
36.	(c)	37.	(c)	38.	(a)	39.	(c)	40.	(b)
41.	(c)	42.	(c)	43.	(c)	44.	(c)	45.	(d)
46.	(b)	47.	(a)	48.	(b)	49.	(b)	50.	(d)